If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x-36=0
a = 7; b = 4; c = -36;
Δ = b2-4ac
Δ = 42-4·7·(-36)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-32}{2*7}=\frac{-36}{14} =-2+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+32}{2*7}=\frac{28}{14} =2 $
| 360-x-x=76 | | 14-4y=y+1 | | 7x+18+21x-7x=18 | | 10-q*4=76 | | -2y+5(0.4y-1.6)=0 | | 15x+5x=250 | | 6(d+10)6=9 | | 45x=180x+40x | | -11h-11h+-3=19 | | 72.5=l+(16.5*2) | | x4-10x2+21=0 | | 5+4(w-1)=2w-2(w+4) | | -4/7+1/2w=-1/3 | | 2m/5=20 | | 9/15j=12 | | 5(0.4y-1.6)=2y | | 2x-(12/x)=5 | | -7q+4q=-9 | | 6h/9=15 | | -7u/4=-28 | | 2w+2(w+17/4)=248/2 | | 8=-5n+3 | | 2w+2(w+17/4)=1241/2 | | -6u=12/5 | | 2y-8=2y | | 4(2x+4)=13x+16-5x | | 8.95+x=21.95 | | 6r-4r-r=17 | | 0.45/1.8=0.81/z | | 15=-5/6u | | 6/9h=15 | | x/2-25=35 |